

Авторы: Исаев В.В., Доронин А.В., Воробьев И.А., ООО НПП «ЭКРА», г. Чебоксары, Россия.

КОМПЛЕКСНОЕ РЕШЕНИЕ ЗАЩИТЫ И АВТОМАТИКИ СОБСТВЕННЫХ НУЖД ЭЛЕКТРОСТАНЦИИ

В настоящее время в Российской Федерации активно происходит реконструкция устаревших и выработавших свой ресурс распределительных устройств (РУ) электростанций. Используя накопленный опыт разработки и изготовления микропроцессорной релейной защиты для генераторов, блоков генератор-трансформатор [1], НПП «ЭКРА» внедряет свои новые разработки в РУ электростанций, учитывающие особенности и требования к РЗА собственных нужд электростанций.

С 2010 года серийно выпускаются микропроцессорные терминалы защиты, автоматики, управления и сигнализации присоединений 6-35 кВ серии ЭКРА 211. Терминалы соответствуют ТУ 3433-026-20572135-2010, имеют сертификат соответствия РОСС RU.ME81.B00671.

Терминалы серии ЭКРА 211 предназначены для установки в комплектных распределительных устройствах (КРУ), в шкафах и на

панелях. Они могут применяться на электростанциях и предприятиях электрических сетей, на газовых и нефтяных промыслах, на нефтеперекачивающих и газокомпрессорных станциях и других объектах газовой и нефтяной промышленности.

Состав защит, программная и аппаратная конфигурация терминала типизирована (см. табл. 1), однако может быть адаптирована на основе требований Заказчика и заводов-изготовителей основного оборудования с учетом особенностей привязки к конкретному объекту.

Аппаратные особенности терминалов серии ЭКРА 211(см. фото 1):

- большой графический дисплей, позволяющий отображать мнемосхему присоединения, удобно параметрировать функции терминала, просматривать измеряемые;
- расширенная функциональная клавиатура;
- двухцветные (зеленый и красный) программируемые сигнальные светодиоды;
- порт USB на лицевой панели для подключения персонального компьютера;
- порт Ethernet;
- два порта RS-485.

Функциональные особенности терминалов серии ЭКРА 211:

- предусмотрено выравнивание входных токов для дифференциальной защиты;
- возможность работы в расширенном диапазоне частот (3-80 Гц);
- возможность предварительной настройки до 8 групп уставок с возможностью оперативного выбора любой из группы;
- наличие свободно-конфигурируемых дискретных входов;
- действие защитных или логических функций на любую выходную цепь через программируемую «матрицу»;
- исключение несанкционированного изменения конфигурации терминала (в частности, матрицы отключений) посредствм системы паролей и разграничения уровня доступа по интерфейсам связи;

Исаев Вячеслав Васильевич

Дата рождения: 03.10.1964 г. В 1988 году окончил Новочеркасский политехнический институт по специальности «Автоматизация производства и распределения электроэнергии». Заведующий отделом защит низкого напряжения ООО НПП «ЭКРА».

Фото 1. Лицевая панель терминала ЭКРА 211

ПРАКТИКА

Релейная зашита

Доронин Александр Викторович

Дата рождения: 07.02.1976 г. В 1998 году окончил Чувашский государственный университет им. И.Н. Ульянова (ЧГУ) по специальности «Автоматизация энергосистем». Заведующий сектором проектирования отдела РЗА станционного оборудования

Воробьев Илья Алексеевич

Дата рождения 21.01.1986 г. В 2009 г. окончил Чувашский государственный университет им. И.Н. Ульянова, кафедра «Электрических и электронных аппаратов», специализация «Режимы работы электрических источников питания, подстанций, сетей и систем». Магистр техники и технологии. Руководитель группы отдела защит низкого напряжения ООО НПП «ЭКРА».

- осциллографирование 30 осциллограмм аварийных процессов длительностью до 50 сек. каждая;
- регистрация до 7500 событий в нормальном и аварийном режимах;
- учет коммутационного и механического ресурсов выключателя;
- Интеграция в АСУ ТП по протоколам ModBus/ RTU, ModBus/TCP, MЭK 60870-5-103, MЭK 60870-5-104, MЭK 61850-8.1;
- программная синхронизация времени по протоколам ModBus/RTU, ModBus/TCP, MЭК 60870-104,103, SNTP;
- аппаратная синхронизация времени от секундных импульсов PPS, PPM;
- совместимость по внешнему программному обеспечению со шкафами серии ШЭ111X и ШЭЭ2XX.

На рис. 1 показан пример комплексного решения защиты и автоматики собственных нужд на электростанции.

Для защиты генераторов и трансформаторов, работающих в блоках генератортрансформатор, трансформаторов собственных нужд, пускорезервных трансформаторов, управления генераторным выключателем используются шкафы типа ШЭ1110М, ШЭ1111, ШЭ1113.

В качестве защит и автоматики основных и резервных вводов на секцию применяются терминалы ЭКРА 211 0603, для секционного выключателя – ЭКРА 211 0401.

Для защиты магистрали резервного питания устанавливается терминал ЭКРА 211 0701.

Защита и автоматика управления выключателем линии и линии к ТСН обеспечивается терминалами ЭКРА 211 0301.

Для защиты электродвигателей в зависимости от мощности и типа применяются терминалы ЭКРА 211 0501 ... 0503.

Для секции 1 КРУ 10 кВ Верхне-Мутновской геотермальной теплоэлектростанции (ГеоТЭС) (рис. 2) было реализовано следующее решение:

- защита и автоматика генератора мощностью 5 МВт на базе терминала ЭКРА 211 0101;
- защита и автоматика кабельной линии и линии к ТСН на базе ЭКРА 211 0301;
- дифференциальная защита секции и автоматика управления секционным выключателем на базе терминала ЭКРА 211 1401.

Терминалы встраивались в ячейки производства «Таврида Электрик» с выключателями BB-TEL.

Табл. 1.

Терминал	Тип объекта
ЭКРА 211 0101	Защита генератора мощностью до 12 МВт
ЭКРА 211 0201	Линия к ТСН (с дифференциальной защитой ТСН)
ЭКРА 211 0301	Кабельная или воздушная линия, линия к ТСН
ЭКРА 211 0302	Линия с дифференциальной защитой
ЭКРА 211 0303	Линия с дистанционной защитой
ЭКРА 211 0401	Секционный выключатель
ЭКРА 211 0501	Электродвигатель мощностью до 5 МВт
ЭКРА 211 0502	Электродвигатель мощностью более 5 МВт
ЭКРА 211 0503	Двухскоростной электродвигатель
ЭКРА 211 0601	Ввод на ТСН с АВР
ЭКРА 211 0602	Ввод на секцию (для подстанций)
ЭКРА 211 0603	Ввод на секцию с дистанционной защитой (для станций)
ЭКРА 211 0701	Ввод на магистраль резервного питания
ЭКРА 211 1301	Управление регулятором коэффициента трансформации
ЭКРА 211 1302	Управление генераторным выключателем
ЭКРА 211 1401	Дифференциальная защита шин на 4 присоединения, управление секционным выключателем
ЭКРА 211 1501	Трансформатор напряжения (ТН) секции
ЭКРА 211 1601	Линия к БСК
ЭКРА 211 1701	Защита реактора

научно-практическое издание

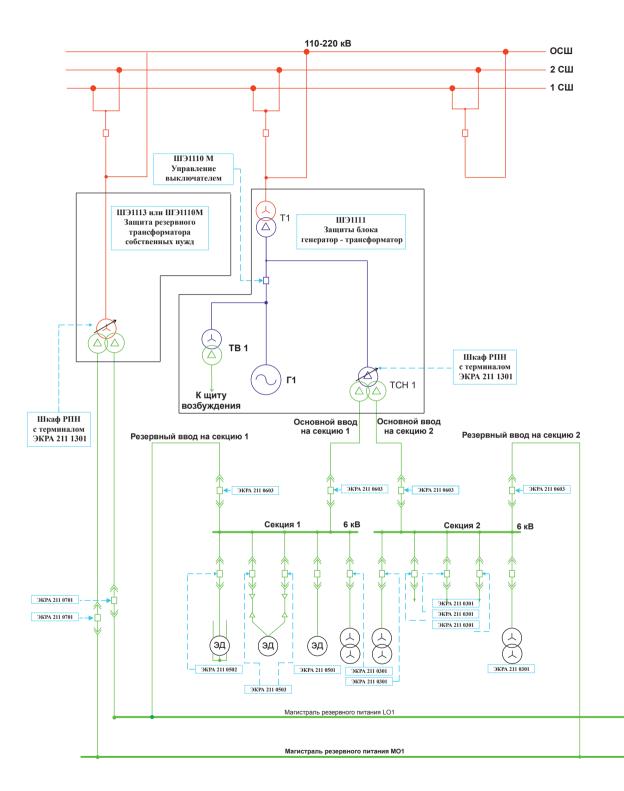
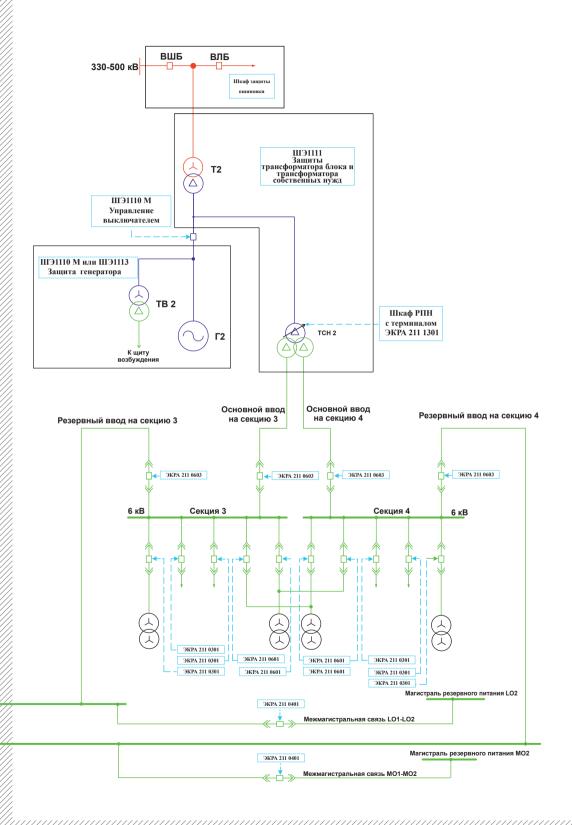



Рис. 1 Комплексное решение защиты и автоматики собственных нужд на электростанции

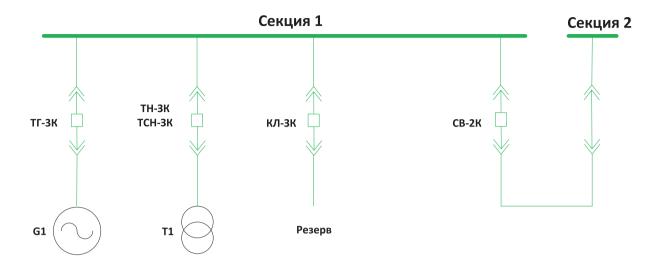


Рис.2 Схема КРУ Верхнее-Мутновской ГеоТЭС

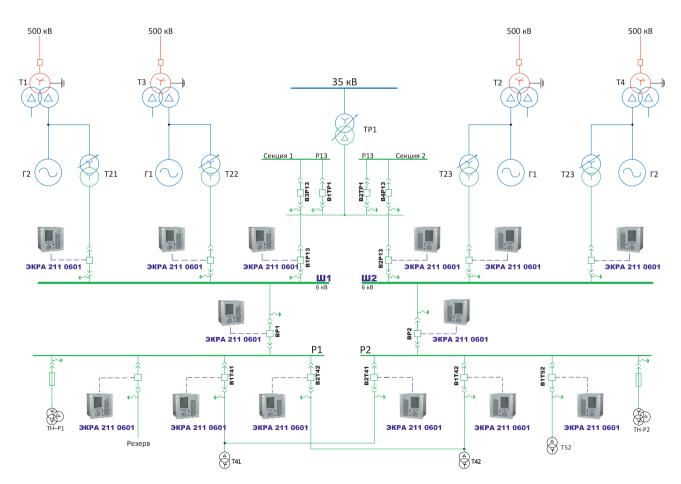


Рис. 3 Схема КРУ 6 кВ (Р1, Р2) Саяно-Шушенской ГЭС

Фото 2. Терминалы ЭКРА 211 в ячейках КРУ Верхне-Мутновской ГеоТЭС

По требованиям заказчика было реализовано оперативное переключение между двумя наборами уставок.

При реконструкции собственных нужд Саяно-Шушенской ГЭС (СШГЭС) было принято решение о замене ячеек КРУ и обновлении аппаратуры РЗА. В проекте, выполненном ОАО «Ленгидропроект», использованы ячейки КРУ С-410 производства ЗАО «ВНИИР ГидроЭлектроАвтоматика» с выключателями VD-4 производства АВВ и терминалами ЭКРА 211 0601 производства НПП «ЭКРА» (см. рис. 3).

Особенностями применения терминалов ЭКРА 211 0601 в данном проекте являются:

- универсальное исполнение логики терминала, позволяющее использовать его для всех типов присоединений собственных нужд КРУ 6 кВ;
- логика работы ABP TCH, разработанная по требованиям Заказчика;
- расчет коммутационного и механического ресурса выключателя;
- поддержка протокола МЭК 61850-8-1.

Высокая производительность аппаратно-программной платформы терминалов серии ЭКРА 211 позволяет реализовать защиты собственных нужд электрических станций всех типов.

Для комплексного и успешного выпол-

Фото 3. Терминал ЭКРА 211 0601 в ячейке С-410, установленной на секции Р7 КРУ 6 кВ Саяно-Шушенской ГЭС

нения проекта по РЗА объектов генерации НПП «ЭКРА» может предложить Заказчику весь перечень работ:

- проектирование;
- изготовление и поставка оборудования;
- шеф-наладочные работы;
- обучение персонала.

Литература:

1. Шкафы защит станционного оборудования. // Новости электротехники. – 2005. – № 2 (32). 🔊

428003, Россия, г. Чебоксары,

пр. И. Яковлева, 3

Тел./факс: (8352) 220-110 (многоканальный),

220-130 (автосекретарь)

E-mail: ekra@ekra.ru, http://www.ekra.ru