VЛК 621 311 1 019

Авторы: Иванов Н.Г., Солдатов А.В., Наумов В.А., Антонов В.И.,

ООО НПП «ЭКРА». г. Чебоксары, Россия.

Ivanov N.G., Soldatov A.V.. Naumov V.A., Antonov V.I.

ОПЕНКА ЧАСТОТЫ СЕТИ В ПИФРОВЫХ СИСТЕМАХ РЗА ПО ПЕРЕХОДУ ЧЕРЕЗ НУЛЬ: ХАРАКТЕРИСТИКИ ТОЧНОСТИ

FREOUENCY ESTIMATION IN DIGITAL RELAY PROTECTION AND **AUTOMATION USING ZERO-CROSSING TECHNIQUE**

Аннотация: исследованы метрологические характеристики способа оценки частоты по переходу сигнала через нуль. Показано, что главными факторами, влияющими на точность оценки частоты, являются частота дискретизации и отношение сигнал/шум.

Ключевые слова: частота электрической сети, метод оценки частоты по переходу через нуль, характеристики точности.

Abstract: metrological characteristics of zero-crossing frequency estimation technique are studied. It is shown that main factors influencing the accuracy of frequency estimate are sampling rate and signal-to-noise ratio.

Keywords: frequency of power network, zero-crossing frequency estimation technique. frequency measurement accuracy.

Введение

Оценка частоты широко используется в алгоритмах автоматики энергосистем (автоматическая частотная разгрузка, автоматический частотный ввод резерва, автоматическая синхронизация и т.д.), а также в алгоритмах определения ортогональных составляющих сигналов. Прецизионная оценка частоты является необходимым условием эффективной работы этих алгоритмов.

Известно множество цифровых алгоритмов определения частоты [1], однако, в значительной части цифровых устройств РЗА продолжает использоваться классический метод оценки частоты по переходу сигнала через нуль. Целью данной работы является исследование метрологических характеристик этого метода.

Составляющие погрешности оценки

Для оценки частоты \hat{f} определяется период сигнала \tilde{T} по переходам через нуль.

Цифровые системы РЗА работают с отсчетами сигналов, поэтому момент перехода

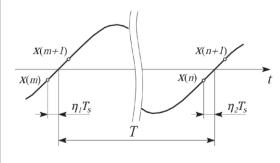


Рис. 1. Оценка периода по переходам сигнала через нуль

сигнала через нуль не определен. Эта неопределенность разрешается обычно с помощью линейной интерполяции.

Тогда оценка периода сигнала (рис. 1)

$$\hat{T} = T_{s} (n - m - \eta_{I} + \eta_{2})$$

где $T_{\rm s}$ – период дискретизации. Ошибка оценки периода

$$\Delta T = \Delta T_i + \Delta T_n \tag{1}$$

включает в себя ошибки, вызванные интерполяцией ΔT_i и наличием шумов ΔT_{ni} и сказывается на точности оценки частоты, приводя к погрешно-

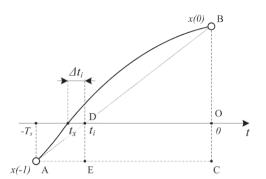
$$\Delta f = \frac{1}{\frac{I}{f} + \Delta T} - f = -f \frac{f \Delta T}{I + f \Delta T}.$$
 (2)

Отметим, что искажение сигнала, вызванное наличием в сигнале высших гармоник или свободных составляющих, может вызвать ошибки в оценке частоты. Поэтому для оценки частоты обычно используется напряжение, в котором свободные составляющие, как правило, не появляются. Кроме того, кратные гармоники в напряжении представлены относительно невысоко [2], в связи с чем они не приводят к появлению «ложных» переходов сигнала через нуль, а значит, практически не влияют на точность оценки частоты.

Рассмотрим влияние составляющих погрешности ΔT на точность определения частоты.

Погрешность интерполяции

Частота сети определяется как частота цифрового сигнала


$$x(k) = X_m \sin(k\omega T_s + \psi), \tag{3}$$

полученного из непрерывного сигнала

Влалимир Александрович

Окончил в 2001 г. электроэнергетический факультет Чувашского государственного университета по специальности инженер, в 2002 г. зашитил магистерскую диссертацию. В 2005 г. защити во ВНИИЭ кандидатскую диссертацию «Анализ и совершенствование продольных дифференциальных защит генераторов и блоков генератор-трансформатор» Лиректор по развитию ООО НПП «ЭКРА».

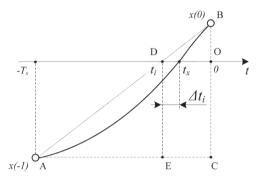


Рис. 2. Иллюстрация механизма возникновения погрешности интерполяции Δt_i : a) $\Delta t_i < 0$. 6) $\Delta t_i > 0$

$$x(t) = X_m \sin(\omega t + \psi), \tag{4}$$

где X_m – амплитуда, $\omega = 2\pi f$ – циклическая частота, ψ – начальная фаза сигнала.

Период сигнала (4) будем определять по переходу с отрицательной полуволны на положительную; тогда в цифровом сигнале (3) переход будет находиться между отсчетами разной полярности. Примем, что положительный отсчет будет иметь номер k = 0 ($t_k = kT_s = 0$), а номер отрицательного отсчета k=-1 ($t_k=-T_s$).

Тогда, как видно из рис. 2, момент перехода сигнала через нуль находится на полуинтервале $(-T_s; 0]$, и согласно (4)

$$t_x = -\frac{\psi}{\omega}$$
.

Момент перехода через нуль интерполированного сигнала

$$t_{i} = -DO = -AC\frac{BO}{BC} = -T_{s}\frac{x(0)}{x(0) - x(-1)} =$$

$$= -\frac{T_{s}\sin\psi}{\psi - \sin(-\omega T_{s} + \psi)}.$$
(6)

Погрешность, с которой определяется момент перехода через нуль,

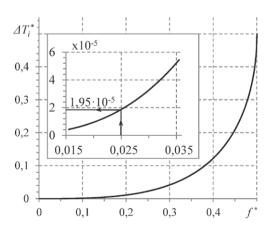
$$\Delta t_i = t_x - t_i$$
.

С учетом (5) и (6) погрешность

научно-практическое издание

$$\Delta t_i = -\frac{\psi}{\omega} + \frac{T_s \sin \psi}{\sin \psi - \sin(-\omega T_s + \psi)} \tag{7}$$

принимает максимальное значение $\Delta t_{i,max}$ при


$$\psi_{1,2} = \frac{1}{2} \left\{ \omega T_s \pm \arccos \left[\omega T_s \operatorname{ctg} \left(\frac{\omega T_s}{2} \right) - 1 \right] \right\}.$$
 (8)

Знак «плюс» в (8) соответствует случаю перехода интерполяционной прямой через нуль правее точки перехода сигнала через нуль (рис. 2а), а знак «минус» - левее (рис. 26). Возникновение событий в последовательности а) и б) рис. 2 приводит к уменьшению оценки периода ($\Delta T_i < 0$), а в последовательности б) и а) – к его увеличению ($\Delta T_i > 0$). Максимальная ошибка ΔT_i будет равна

$$\Delta T_i = 2\Delta t_{i,max}$$

Удобно представлять максимальную ошибку интерполяции в виде нормированной зависимости (рис. 3, $\Delta T_i > 0$)

$$\Delta T_i^* = f \Delta T_i = -\frac{\psi}{\pi} + \frac{2f^* \sin \psi}{\sin \psi - \sin \left(-2\pi f^* + \psi\right)},$$
 (9)

погрешности интерполяции от относительной часто

Антонов Владислав Ивановичу

Окончил в 1978 г. факультет электрификации и автоматизации промышленности Чувашского государственного университета. В 1985 г. защитил в Ленинградском политехническом институте кандидатскую диссертацию «Разработка и исследование новых принципов построения измерительных органов направленных защит линий электроперелачи». Лоцент кафедры теоретических основ электротехники и релейной защиты и автоматики Чувашского государственного университета, главный специалист отдела РЗА станционного оборудования ООО НПП «ЭКРА».

Солдатов Александр Вячеславович

Дата рождения: 23.02.1984 г. Окончил в 2006 г. электроэнергетический факультет ЧГУ по специальности «Релейная защита и автоматизация электроэнергетических систем», кафедра ТОЭ и РЗА. Зав. сектором отдела РЗА станционного оборудования ООО НПП «ЭКРА».

$$\psi = \pi f^* - \frac{1}{2}\arccos\left[2\pi f^*\operatorname{ctg}\left(\pi f^*\right) - 1\right]$$

от относительной частоты

$$f^* = fT_{s}. \tag{10}$$

Такая же максимальная ошибка, но с отрицательным знаком, будет иметь место в случае $\varDelta T_i \! < \! 0.$

Как видно из рис. 3, для обеспечения необходимой точности определения частоты нужно уменьшать f^* , увеличивая частоту дискретизации.

Влияние шумов

Максимальная погрешность в оценке периода сигнала с шумом возникает при смещении отсчетов из-за шума в одну сторону (рис. 4):

$$\Delta t_n = t_i - t_n, \tag{11}$$

ГД

$$t_n = -DE = -AC\frac{BE}{BC} = T_s \frac{\sin\psi + \delta / X_m}{\sin\psi - \sin(-\omega T_s + \psi)} - (12)$$

момент перехода через нуль при линейной интерполяции сигнала по искаженным отсчетам. Из (11) с учетом (6) и (12) следует, что

$$\Delta t_n = \pm \frac{T_s}{R_{SNR}} \frac{I}{\sin \psi - \sin(-\omega T_s + \psi)},$$

где $R_{SNR} = |X_m/\delta|$ – отношение сигнал/шум.

Погрешность $\varDelta t_n$ достигает максимального значения

$$\Delta t_{n,max} = \pm R_{SNR}^{-1} \frac{T_s}{\sin(\omega T_s)}$$

при начальной фазе $\psi = 0$.

Составляющая ошибки определения периода ΔT_n будет максимальной, если шум сдвигает интерполяционные прямые в окрестности переходов сигналов через нуль в разные стороны. Поэтому

$$\Delta T_n = 2\Delta t_{n,max}$$
.

Наибольший вклад шумов в итоговую погрешность возникает, когда ошибки $\varDelta T_i$ и $\varDelta T_n$ имеют одинаковый знак.

Анализ зависимости нормированной погрешности (рис. 5, $\varDelta T_n > 0$)

$$\Delta T_n^* = R_{SNR} f \Delta T_n = \pm \frac{2 f^*}{\sin(2\pi f^*)}$$
 (13)

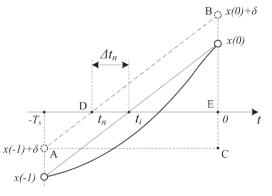


Рис. 4. Механизм влияния помехи на погрешность Δt_n

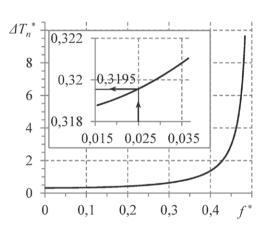


Рис. 5. Зависимость максимальной нормированной погрешности, вызванной шумом, от относительной частоты $(\Delta T_n > 0)$

показывает, что повышения точности оценки частоты можно добиться путем увеличения частоты дискретизации и отношения сигнал/шум.

Пример расчета

При реализации алгоритма оценки частоты возникают две задачи: прямая – определение точности оценки частоты Δf при известных параметрах сигнала, и обратная – определение необходимой частоты дискретизации сигнала при заданной точности оценки частоты. Для решения обеих задач можно использовать зависимости, приведенные на рис. 3 и 5.

Рассмотрим решение прямой задачи для цифрового сигнала (3) с шумом, имеющего частоту f= $50~\Gamma$ ц, период дискретизации T_s = $1/2000~\rm c$ и отношение сигнал/шум R_{SNR} = 2000.

НАУКА

Николай Геннальевич

Дата рождения: 08.12.1989 г.

РЗА электроэнергетического

Окончил кафедру ТОЭ и

факультета Чувашского

университета в 2013 г.,

техники и технологии

«Электроэнергетика и

Инженер отдела РЗА

ООО НПП «ЭКРА».

станционного оборулования

по направлению

электротехника».

получил степень магистра

государственного

По относительной частоте сигнала (10)

определяется максимальная нормированная погрешность интерполяции (рис. 3)

$$\Delta T_i^* = 1.95 \cdot 10^{-5}$$

и максимальная нормированная погрешность, вызванная шумом (рис. 5)

$$\Delta T_n^* = 0.3195.$$

Тогда ошибка определения периода сигнала с учетом (9) и (13):

$$\Delta T = \pm \frac{1}{f} \left(\Delta T_i^* + R_{SNR}^{-1} \Delta T_n^* \right) = \pm \left(3.90 \cdot 10^{-7} + 3.20 \cdot 10^{-6} \right) =$$

$$= \pm 3.59 \cdot 10^{-6} \text{c}.$$

Максимальная погрешность оценки частоты (2) достигается при отрицательном знаке ошибки ΔT :

 Δf = 0,0090 Гц.

Выводы

Точность оценки частоты зависит, главным образом, от погрешности интерполяции и отношения сигнал/шум. Следовательно, главными путями повышения точности оценки частоты являются повышение частоты дискретизации сигнала и повышение отношения сигнал/шум.

Литература

1. Антонов В.И., Наумов В.А., Шевцов В.М. Оценка частоты электрической сети: теоретические основы и практические алгоритмы. // Цифровая электротехника: проблемы и достижения: сборник научных статей. Выпуск 1. Чебоксары: РИЦ «СРЗАУ», 2012.

2. ГОСТ Р 54149-2010. Нормы качества электрической энергии в системах общего электроснабжения. М.: Стандартинформ, 2012.

ПОДПИСКА

Подписка на 2014 г. (4 номера) – 2800 руб.

Стоимость подписки включает НДС и цену доставки.

ГАРАНТИРОВАННОЕ ПОЛУЧЕНИЕ ВСЕХ НОМЕРОВ ЖУРНАЛА

Вы можете оформить подписку на журнал «Релейная защита и автоматизация» через редакцию с любого месяца и приобрести отдельные номера, отправив заполненную Заявку удобным для Вас способом (по e-mail: ina@srzau-ric.ru, на сайте: www.srzau-ric.ru или почтовому адресу: 428003, Россия, Чувашская Республика, г. Чебоксары, пр-кт И. Яковлева, д. 3).

А также в любом почтовом отделении России по Объединенному каталогу «Пресса России», подписной индекс **43141**.

научно-практическое издание